Asymptotic Regional Boundary Gradient Observability in Diffusion Neumann Problem
نویسندگان
چکیده
منابع مشابه
Asymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملGradient Observability for Diffusion Systems
The aim of this paper is to study regional gradient observability for a diffusion system and the reconstruction of the state gradient without the knowledge of the state. First, we give definitions and characterizations of these new concepts and establish necessary conditions for the sensor structure in order to obtain regional gradient observability. We also explore an approach which allows for...
متن کاملa boundary meshless method for neumann problem
boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...
متن کاملasymptotic distributions of neumann problem for sturm-liouville equation
in this paper we apply the homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of sturm-liouville type on $[0,pi]$ with neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued sign-indefinite number of $c^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1804/1/012046